Муниципальное бюджетное общеобразовательное учреждение г. Иркутска средняя общеобразовательная школа № 35

Приложение к ООП СОО МБОУ г. Иркутска СОШ № 35 Приказ № 01-10-121 от 29.08.23

РАБОЧАЯ ПРОГРАММА ПЕДАГОГА

по астрономии 11 класс

Рабочая программа составлена на основе требований к результатам освоения основной образовательной программы среднего общего образования МБОУ г. Иркутска СОШ № 35 ФГОС СОО

2023-2024 учебный год

Цель программы: формирование у учащихся научного мировоззрения, представлений о физической картине мира, основанного на знаниях и жизненном опыте.

Задачи обучения астрономии:

- Осознание принципиальной роли астрономии в познании фундаментальных законов природы и формирования естественнонаучной картины мира;
- Приобретение знаний о физической природе небесных тел и систем, строения и эволюции Вселенной, пространственных и временных масштабах Вселенной, наиболее важных астрономических открытиях, определивших развитие науки и техники;
- Овладение умениями объяснять видимое положение и движение небесных тел по астрономическим объектам, навыками практических компьютерных приложений для определения вида звездного неба в конкретном пункте для заданного времени;
- Развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний по астрономии с использованием различных источников информации и современных информационных технологий;
 - Формирование научного мировоззрения;
- Формирование навыков использования естественнонаучных и физико-математических знаний для объектного анализа устройства окружающего мира, на примере достижений современной астрофизики, астрономии и космонавтики.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

1. Учащиеся должны знать и понимать:

- смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороид, планета, спутник, звезда, Солнечная система, Галактика, Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение, Большой Взрыв, черная дыра;
- смысл физических величин: парсек, световой год, астрономическая единица, звездная величина;
- смысл физического закона Хаббла;
- основные этапы освоения космического пространства;
- гипотезы происхождения Солнечной системы;
- основные характеристики и строение Солнца, солнечной атмосферы;
- размеры Галактики, положение и период обращения Солнца относительно центра Галактики;

2. Учащиеся должны уметь:

- приводить примеры: роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных диапазонов электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю;

- описывать и объяснять: различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы "цвет-светимость", физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера;
- характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;
- находить на небе основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;
- использовать компьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии, отделение ее от лженаук; оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.

Общеучебные умения, навыки и способы деятельности.

Познавательная деятельность:

- -использование для познания окружающего мира различных естественнонаучных методов: наблюдения, измерения, эксперимент, моделирования;
- -формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
- -овладение адекватными способами решения теоретических и экспериментальных задач;
- -приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно – коммуникативная деятельность:

- -владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;
- -использование различных источников информации.

Рефлексивная деятельность:

- -владение навыками контроля и оценки своей деятельности, умение предвидеть возможные результаты своих действий;
- -организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Содержание и предметные результаты учебного предмета «Астрономия»

№ п/п	Содержание учебного предмета	Предметные результаты
1. Введение	Астрономия – наука о космосе. Понятие	Обучающиеся научатся:
	Вселенной. Структуры и	-понимать структуру и масштабы Вселенной и

	масштабы Вселенной. Далёкие глубины Вселенной.	месте человека в ней. Средства, которые используют астрономы, чтобы заглянуть в самые удалённые уголки Вселенной и не только увидеть небесные тела в недоступных с Земли диапазонах длин волн электромагнитного излучения, но и узнают о новых каналах получения информации о небесных телах с помощью нейтринных и гравитационно-волновых телескопов. -осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников, ее обработку и представление в разных формах;
2. Астрометрия	Звездное небо. Что такое созвездие. Основные созвездия Северного полушария. Небесный экватор и небесный меридиан; горизонтальные, экваториальные координаты; кульминации светил. Горизонтальная система координат. Экваториальная система координат. Эклиптика, точка весеннего равноденствия, неравномерное движение Солнца по эклиптике. Синодический месяц, узлы лунной орбиты, почему происходят затмения, Сарос и предсказания затмений. Солнечное и звёздное время, лунный и солнечный календарь, юлианский и григорианский календарь.	Обучающиеся научатся: - различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд; - пользоваться картой звёздного неба при наблюдениях звёздного неба; - использовать карту звездного неба для нахождения координат светила; - выражать результаты измерений и расчетов в единицах Международной системы; - описывать движения планет, Луны и Солнца, их интерпретации; — решать задачи на применение изученных астрономических законов; - определять роль затмений Луны и Солнца в жизни общества и познакомятся с историей их научного объяснения. Узнают, как на основе астрономических явлений люди научились измерять время и вести календарь.
3. Небесная механика	Геоцентрическая и гелиоцентрическая	Обучающиеся научатся:

	система мира; объяснение петлеобразного движения планет; доказательства движения Земли вокруг Солнца; годичный параллакс звёзд. Обобщённые законы Кеплера и определение масс небесных тел. Первая и вторая космические скорости; оптимальная полуэллиптическая орбита космического аппарата к планетам, время полёта к планете.	- понимать различия между гелиоцентрической и геоцентрической системами мира. Узнают, как благодаря развитию астрономии, люди перешли от представления геоцентрической системы мира к революционным представлениям гелиоцентрической системы мира. Как на основе последней были открыты законы, управляющие движением планет, и позднее, закон всемирного тяготения различать гипотезы о происхождении Солнечной системы; Обучающиеся получат возможность научиться: - приводить примеры практического использования астрономических знаний о небесных телах и их системах; - решать задачи на применение изученных астрономических законов.
4. Строение Солнечной системы	Отличия планет земной группы и планет-гигантов; о планетах-карликах; малых телах; о поясе Койпера и облаке комет Оорта. Форма Земли, внутреннее строение, атмосфера и влияние парникового эффекта на климат Земли. Формирование поверхности Луны; природа приливов и отливов на Земле и их влияние на движение Земли и Луны; процессия земной оси и движение точки весеннего равноденствия. Физические свойства Меркурия, Марса и Венеры; исследования планет земной группы космическими аппаратами. Физические свойства Юпитера, Сатурна, Урана и Нептуна; вулканическая деятельность на спутнике Юпитера Ио; природа колец вокруг планет-гигантов; планеты-карлики. Физическая природа астероидов и комет;	Обучающиеся научатся: - указывать общие свойства и отличия планет земной группы и планет-гигантов; - малых тел Солнечной системы и больших планет; - выстраивать по плану характеристику планеты; - проводить сравнительный анализ характеристик планет; - рассуждать о различных теориях происхождения Солнечной системы использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии, отделение ее от лженаук; оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.

		пояс Койпера и облако комет Оорта; природа	
		метеоров и метеоритов. Современные	
		представления о происхождении Солнечной	
		системы.	
5.	Астрофизика и	Принцип действия и устройство телескопов,	Обучающиеся узнают природу Солнца, фазы его
	звёздная астрономия	рефракторов и рефлекторов; радиотелескопы	активности. Как солнечная активность влияет
		и радиоинтерферометры. Определение	на климат и биосферу Земли. Как на основе
		основных характеристик Солнца; строение	законов физики можно изучить внутреннее
		солнечной атмосферы; законы излучения	строение Солнца. Как наблюдения за потоками
		абсолютно твёрдого тела и температура	нейтрино от Солнца помогли заглянуть в центр
		фотосферы и пятен; проявление солнечной	Солнца и узнать о термоядерном источнике
		активности и её влияние на климат и	энергии.
		биосферу Земли. Расчёт температуры внутри	Научаться:
		Солнца; термоядерный источник энергии	- различать основные характеристики звёзд
		Солнца; наблюдения солнечных нейтрино.	(размер, цвет, температура), соотносить цвет
		Определение основных характеристик звёзд;	звезды с её температурой;
		спектральная классификация звёзд;	- определять основные характеристики звёзд и
		диаграмма «спектр-светимость» и	их взаимосвязь между собой;
		распределение звёзд на ней; связь массы со	 рассуждать о возможных путях эволюции
		светимостью звёзд главной	звезд различной массы.
		последовательности; звёзды, красные	Узнают о внутреннем строении звёзд и
		гиганты, сверхгиганты и белые карлики.	источниках их энергии; о необычности свойств
		Особенности строения белых карликов и	звёзд белых карликов, нейтронных звёзд и
		предел Чандрасекара на их массу; пульсары	чёрных дыр. Как рождаются, живут и умирают
		и нейтронные звёзды; понятие чёрной дыры;	звёзды. Как по наблюдениям пульсирующих
		наблюдения двойных звёзд и определение их	звёзд цефеид определять расстояния до других
		масс; пульсирующие переменные звёзды;	галактик. Как астрономы по наблюдениям
		цефеиды и связь периода пульсаций со	двойных и кратных звёзд определяют их массы.
		светимостью у них. Наблюдаемые	Получат представления о взрывах новых и
		проявления взрывов новых и сверхновых	сверхновых звёзд. Узнают, как в звёздах
		звёзд; свойства остатков взрывов сверхновых	образуются тяжёлые химические элементы.
		звёзд. Жизнь звёзд различной массы и её	- использовать приобретенные знания и умения в
		отражение на диаграмме «спектр	практической деятельности и повседневной
		-светимость»; гравитационный коллапс ядра	жизни для: понимания взаимосвязи астрономии
			1

	массивной звезды в конце её жизни. Оценка возраста звёздных скоплений.	с другими науками, в основе которых лежат знания по астрономии, отделение ее от лженаук; оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.
6. Млечный путь	Наблюдаемые характеристики отражательных и диффузных туманностей; распределение их вблизи плоскости Галактики; спиральная структура Галактики. Наблюдаемые свойства скоплений и их распределение в Галактике. Наблюдение за движением звёзд в центре Галактики в инфракрасный телескоп; оценка массы и размеров чёрной дыры по движению отдельных звёзд.	Узнают как устроена наша Галактика Млечный Путь», как распределены в ней рассеянные и шаровые звёздные скопления и облака межзвёздного газа и пыли. Как с помощью наблюдений в инфракрасных лучах удалось проникнуть через толщу межзвёздного газа и пыли в центр Галактики, увидеть движение звёзд в нём вокруг сверхмассивной чёрной дыры. Получат возможность научиться: — приводить примеры практического использования астрономических знаний о небесных телах и их системах; - осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников, ее обработку и представление в разных формах.
7. Галактики	Типы галактик и их свойства; красное смещение и определение расстояний до галактик; закон Хаббла; вращение галактик и содержание тёмной материи в них. Природа активности галактик; природа квазаров. Природа скоплений и роль тёмной материи в них; межгалактический газ и рентгеновское излучение от него; ячеистая структура распределения Галактик и скоплений во Вселенной.	Обучающиеся научатся: Научаться: - различать основные типы галактик; — рассуждать о возможных путях эволюции галактик; — оценивать и использовать информацию, содержащуюся в Интернете, научно-популярных статьях. Узнают о строении галактик. Поймут как рождаются, живут и умирают галактики. Как по наблюдениям пульсирующих звёзд цефеид определять расстояния до других галактик.

8.	Строение и эволюция	Связь закона всемирного тяготения с	Обучающиеся научатся:
	Вселенной	представлениями о конечности и	- приводить примеры: роли астрономии в
		бесконечности Вселенной; фотометрический	развитии цивилизации, использования методов
		парадокс; необходимость общей теории	исследований в астрономии, различных
		относительности для построения модели	диапазонов электромагнитных излучений для
		Вселенной. Связь средней плотности	получения информации об объектах Вселенной,
		материи с законом расширения и геометрией	получения астрономической информации с
		Вселенной; радиус и возраст Вселенной.	помощью космических аппаратов и
			спектрального анализа;
			- описывать и объяснять: красное смещение с
			помощью эффекта Доплера.
9.	Современные	Вклад тёмной материи в массу Вселенной;	Обучающиеся научатся:
	проблемы	наблюдение сверхновых звёзд в далёких	- характеризовать особенности методов познания
	астрономии	галактиках и открытие ускоренного	астрономии, возможные пути эволюции
		расширения Вселенной; природа силы	Вселенной;
		всемирного отталкивания. Невидимые	- рассуждать о существовании жизни во
		спутники у звёзд; методы обнаружения	Вселенной;
		экзопланет; экзопланеты с условиями	- использовать приобретенные знания и умения в
		благоприятными для жизни. Развитие	практической деятельности и повседневной
		представлений о существовании жизни во	жизни для: понимания взаимосвязи астрономии
		Вселенной; формула Дрейка и число	с другими науками, в основе которых лежат
		цивилизаций в Галактике; поиск сигналов от	знания по астрономии, отделение ее от лженаук;
		внеземных цивилизаций и подача сигналов	оценивания информации, содержащейся в
		им.	сообщениях СМИ, Интернете,
			научно-популярных статьях.

Тематическое планирование

No	Раздел программы	Количество часов
1	Введение	1
2	Астрометрия	5
3	Небесная механика	3
4	Строение Солнечной системы	7
5	Астрофизика и звёздная астрономия	7

6	Млечный путь	3
7	Галактики	3
8	Строение и эволюция Вселенной	2
9	Современные проблемы астрономии	3
	Всего	34

КАЛЕНДАРНО ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО МАТЕРИАЛА ПО АСТРОНОМИИ В 11 КЛАССЕ

11 класс (34 ч., 1 ч. в неделю)

№ урока	Дата	Тема урока	Основное содержание урока	Д/з
	Введение (1 ч)			
1	4 сентябрь	Введение в астрономию.	Астрономия – наука о космосе. Понятие Вселенной. Структуры	§ 1, 2
1	4 сентяорь	оведение в астрономию.	и масштабы Вселенной. Далёкие глубины Вселенной.	§ 1, 2

			Астрометрия (5 ч)	
2	11 сентябрь	Звёздное небо.	Звездное небо. Что такое созвездие. Основные созвездия Северного полушария.	§ 3
3	18 сентябрь	Небесные координаты.	Небесный экватор и небесный меридиан; горизонтальные, экваториальные координаты; кульминации светил. Горизонтальная система координат.	§ 4
4	25 сентябрь	Видимое движение планет и Солнца.	Эклиптика, точка весеннего равноденствия, неравномерное движение Солнца по эклиптике.	§ 5
5	2 октябрь	Движение Луны и Затмения.	Синодический месяц, узлы лунной орбиты, почему происходят затмения, Сарос и предсказания затмений.	§ 6
6	9 октябрь	Время и календарь.	Солнечное и звёздное время, лунный и солнечный календарь, юлианский и григорианский календарь.	§ 7
]	Небесная механика (3 ч)	
7	16 октябрь	Система мира.	Геоцентрическая и гелиоцентрическая система мира; объяснение петлеобразного движения планет; доказательства движения Земли вокруг Солнца; годичный параллакс звёзд.	§ 8
8	23 октябрь	Законы Кеплера движения планет.	Обобщённые законы Кеплера и определение масс небесных тел.	§ 9
9	6 ноябрь	Космические скорости и межпланетные перелёты.	Первая и вторая космические скорости; оптимальная полуэллиптическая орбита космического аппарата к планетам, время полёта к планете.	§ 10, 11
		Строе	ение Солнечной системы (7 ч)	
10	13 ноябрь	Современные представления о строении и составе Солнечной системы.	Об отличиях планет земной группы и планет-гигантов; о планетах-карликах; малых телах; о поясе Койпера и облаке комет Оорта.	§ 12
11	20 ноябрь	Планета Земля.	Форма Земли, внутреннее строение, атмосфера и влияние парникового эффекта на климат Земли.	§ 13
12	27	Луна и её влияние на	Формирование поверхности Луны; природа приливов и отливов	§ 14

	ноябрь	Землю.	на Земле и их влияние на движение Земли и Луны; процессия	
			земной оси и движение точки весеннего равноденствия.	
13	4 декабрь	Планеты земной группы.	Физические свойства Меркурия, Марса и Венеры; исследования планет земной группы космическими аппаратами.	§ 15
14	11 декабрь	Планеты-гиганты. Планеты-карлики.	Физические свойства Юпитера, Сатурна, Урана и Нептуна; вулканическая деятельность на спутнике Юпитера Ио; природа колец вокруг планет-гигантов; планеты-карлики.	§ 16
15	18 декабрь	Малые тела Солнечной системы.	Физическая природа астероидов и комет; пояс Койпера и облако комет Оорта; природа метеоров и метеоритов.	§ 17
16	25 декабрь	Современные представления о происхождении Солнечной системы	Современные представления о происхождении Солнечной системы.	§ 18
		Астрофиз	зика и звёздная астрономия (7 ч)	
17	15 январь	Методы астрофизических Исследований.	Принцип действия и устройство телескопов, рефракторов и рефлекторов; радиотелескопы и радиоинтерферометры.	§ 19
18	22 январь	Солнце.	Определение основных характеристик Солнца; строение солнечной атмосферы; законы излучения абсолютно твёрдого тела и температура фотосферы и пятен; проявление солнечной активности и её влияние на климат и биосферу Земли.	§ 20
19	29 январь	Внутреннее строение и источник энергии Солнца.	Расчёт температуры внутри Солнца; термоядерный источник энергии Солнца; наблюдения солнечных нейтрино.	§ 21
20	5 февраль	Основные характеристики звёзд.	Определение основных характеристик звёзд; спектральная классификация звёзд; диаграмма «спектр—светимость» и распределение звёзд на ней; связь массы со светимостью звёзд главной последовательности; звёзды, красные гиганты, сверхгиганты и белые карлики.	§ 22–23
21	12 февраль	Белые карлики, нейтронные звёзды,	Особенности строения белых карликов и предел Чандрасекара на их массу; пульсары и нейтронные звёзды; понятие чёрной дыры;	§ 24–25

		чёрные дыры. Двойные,	наблюдения двойных звёзд и определение их масс;	
		кратные и переменные	пульсирующие переменные звёзды; цефеиды и связь периода	
		звёзды.	пульсаций со светимостью у них.	
22	19	Новые и сверхновые	Наблюдаемые проявления взрывов новых и сверхновых звёзд;	§ 26
22	февраль	звёзды.	свойства остатков взрывов сверхновых звёзд.	8 20
			Жизнь звёзд различной массы и её отражение на диаграмме	
23	26	Эволюция звёзд.	«спектр	§ 27
23	февраль	Эволюция звезд.	-светимость»; гравитационный коллапс ядра массивной звезды в	8 21
			конце её жизни. Оценка возраста звёздных скоплений.	
			Млечный путь (3 ч)	
	F		Наблюдаемые характеристики отражательных и диффузных	
24	5	Газ и пыль в Галактике	туманностей; распределение их вблизи плоскости Галактики;	§ 28
	март		спиральная структура Галактики.	
25	12	Рассеянные и шаровые	Наблюдаемые свойства скоплений и их распределение в	8.20
25	март	звёздные скопления	Галактике.	§ 29
	19	Сверхмассивная чёрная	Наблюдение за движением звёзд в центре Галактики в	
26	_	дыра в центре Млечного	инфракрасный телескоп; оценка массы и размеров чёрной дыры	§ 30
	март	Пути	по движению отдельных звёзд.	
			Галактики (3 ч)	
	26		Типы галактик и их свойства; красное смещение и определение	
27	-	Классификация галактик.	расстояний до галактик; закон Хаббла; вращение галактик и	§ 31
	март		содержание тёмной материи в них.	
28	9 март	Активные галактики и квазары.	Природа активности галактик; природа квазаров.	§ 33
			Природа скоплений и роль тёмной материи в них;	
29	16	Скопления галактик.	межгалактический газ и рентгеновское излучение от него;	6 22
<i>29</i>	апрель	Скопления галактик.	ячеистая структура распределения Галактик и скоплений во	§ 33
			Вселенной.	
		Строен	ие и эволюция Вселенной (2 ч)	

30	23 апрель	Конечность и бесконечность Вселенной. Расширяющаяся Вселенная.	Связь закона всемирного тяготения с представлениями о конечности и бесконечности Вселенной; фотометрический парадокс; необходимость общей теории относительности для построения модели Вселенной.	§ 34, 35
31	30 апрель	Модель «горячей Вселенной» и реликтовое излучение.	Связь средней плотности материи с законом расширения и геометрией Вселенной; радиус и возраст Вселенной.	§ 36
Современные проблемы астрономии (3 ч)				
32	7 май	Ускоренное расширение Вселенной и тёмная энергия.	Вклад тёмной материи в массу Вселенной; наблюдение сверхновых звёзд в далёких галактиках и открытие ускоренного расширения Вселенной; природы силы всемирного отталкивания.	§ 37
33	14 май	Обнаружение планет возле других звёзд.	Невидимые спутники у звёзд; методы обнаружения экзопланет; экзопланеты с условиями благоприятными для жизни.	§ 38
34	21 май	Поиск жизни и разума во Вселенной.	Развитие представлений о существовании жизни во Вселенной; формула Дрейка и число цивилизаций в Галактике; поиск сигналов от внеземных цивилизаций и подача сигналов им.	§ 39